skip to main content


Search for: All records

Creators/Authors contains: "Wu, F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Social media cyberbullying has a detrimental effect on human life. As online social networking grows daily, the amount of hate speech also increases. Such terrible content can cause depression and actions related to suicide. This paper proposes a trustable LSTM Autoencoder Network for cyberbullying detection on social media using synthetic data. We have demonstrated a cutting-edge method to address data availability difficulties by producing machine-translated data. However, several languages such as Hindi and Bangla still lack adequate investigations due to a lack of datasets. We carried out experimental identification of aggressive comments on Hindi, Bangla, and English datasets using the proposed model and traditional models, including Long Short-Term Memory (LSTM), Bidirectional Long Short-Term Memory (BiLSTM), LSTM-Autoencoder, Word2vec, Bidirectional Encoder Representations from Transformers (BERT), and Generative Pre-trained Transformer 2 (GPT-2) models. We employed evaluation metrics such as f1-score, accuracy, precision, and recall to assess the models’ performance. Our proposed model outperformed all the models on all datasets, achieving the highest accuracy of 95%. Our model achieves state-of-the-art results among all the previous works on the dataset we used in this paper. 
    more » « less
    Free, publicly-accessible full text available December 15, 2024
  2. With the ever-growing concern for internet security, the field of quantum cryptography emerges as a promising solution for enhancing the security of networking systems. In this paper, 20 notable papers from leading conferences and journals are reviewed and categorized based on their focus on various aspects of quantum cryptography, including key distribution, quantum bit commitment, post-quantum cryptography, and counterfactual quantum key distribution. The paper explores the motivations and challenges of employing quantum cryptography, addressing security and privacy concerns along with existing solutions. Secure key distribution, a critical component in ensuring the confidentiality and integrity of transmitted information over a network, is emphasized in the discussion. The survey examines the potential of quantum cryptography to enable secure key exchange between parties, even when faced with eavesdropping, and other applications of quantum cryptography. Additionally, the paper analyzes the methodologies, findings, and limitations of each reviewed study, pinpointing trends such as the increasing focus on practical implementation of quantum cryptography protocols and the growing interest in post-quantum cryptography research. Furthermore, the survey identifies challenges and open research questions, including the need for more efficient quantum repeater networks, improved security proofs for continuous variable quantum key distribution, and the development of quantum-resistant cryptographic algorithms, showing future directions for the field of quantum cryptography. 
    more » « less
    Free, publicly-accessible full text available December 15, 2024
  3. The main objective of authentic learning is to offer students an exciting and stimulating educational setting that provides practical experiences in tackling real-world security issues. Each educational theme is composed of pre-lab, lab, and post-lab activities. Through the application of authentic learning, we create and produce portable lab equipment for AI Security and Privacy on Google CoLab. This enables students to access and practice these hands-on labs conveniently and without the need for time-consuming installations and configurations. As a result, students can concentrate more on learning concepts and gain more experience in hands-on problem-solving abilities. 
    more » « less
  4. The software supply chain (SSC) attack has become one of the crucial issues that are being increased rapidly with the advancement of the software development domain. In general, SSC attacks execute during the software development processes lead to vulnerabilities in software products targeting downstream customers and even involved stakeholders. Machine Learning approaches are proven in detecting and preventing software security vulnerabilities. Besides, emerging quantum machine learning can be promising in addressing SSC attacks. Considering the distinction between traditional and quantum machine learning, performance could be varies based on the proportions of the experimenting dataset. In this paper, we conduct a comparative analysis between quantum neural networks (QNN) and conventional neural networks (NN) with a software supply chain attack dataset known as ClaMP. Our goal is to distinguish the performance between QNN and NN and to conduct the experiment, we develop two different models for QNN and NN by utilizing Pennylane for quantum and TensorFlow and Keras for traditional respectively. We evaluated the performance of both models with different proportions of the ClaMP dataset to identify the f1 score, recall, precision, and accuracy. We also measure the execution time to check the efficiency of both models. The demonstration result indicates that execution time for QNN is slower than NN with a higher percentage of datasets. Due to recent advancements in QNN, a large level of experiments shall be carried out to understand both models accurately in our future research. 
    more » « less
  5. Software supply chain attacks occur during the processes of producing software is compromised, resulting in vulnerabilities that target downstream customers. While the number of successful exploits is limited, the impact of these attacks is significant. Despite increased awareness and research into software supply chain attacks, there is limited information available on mitigating or architecting for these risks, and existing information is focused on singular and independent elements of the supply chain. In this paper, we extensively review software supply chain security using software development tools and infrastructure. We investigate the path that attackers find is least resistant followed by adapting and finding the next best way to complete an attack. We also provide a thorough discussion on how common software supply chain attacks can be prevented, preventing malicious hackers from gaining access to an organization’s development tools and infrastructure including the development environment. We considered various SSC attacks on stolen codesign certificates by malicious attackers and prevented unnoticed malware from passing by security scanners. We are aiming to extend our research to contribute to preventing software supply chain attacks by proposing novel techniques and frameworks. 
    more » « less
  6. null (Ed.)
    Denial of Service (DoS) is one of the common attempts in security hacking for making computation resources unavailable or to impair geographical networks. In this paper, we detect Denial of Service (DoS) attack from publicly available datasets using Logistic regression, Naive Bayes algorithm and artificial neural networks. The results from our experiments indicate that the accuracy, ROC curve and balanced accuracy of artificial neural network were higher than Naive Bayes algorithm and logistic regression for slightly imbalanced distribution dataset. 
    more » « less
  7. null (Ed.)
    The properties of concretes are controlled by the rate of reaction of their precursors, the chemical composition of the binding phase(s), and their structure at different scales. However, the complex and multiscale structure of the cementitious hydrates and the dissimilar rates of numerous chemical reactions make it challenging to eluci- date such linkages. In particular, reliable predictions of strength development in concretes remain unavailable. As an alternative route to physics- or chemistry-based models, machine learning (ML) offers a means to develop powerful predictive models for materials using existing data. Here, it is shown that ML models can be used to accurately predict concrete’s compressive strength at 28 days. This approach relies on the analysis of a large data set (>10,000 observations) of measured compressive strengths for industrially produced concretes, based on knowledge of their mixture proportions. It is demonstrated that these models can readily predict the 28-day compressive strength of any concrete based merely on the knowledge of the mixture proportions with an accuracy of approximately ±4.4 MPa (as captured by the root- mean-square error). By comparing the performance of select ML algorithms, the balance between accuracy, simplicity, and inter- pretability in ML approaches is discussed. 
    more » « less
  8. null (Ed.)
    This article applies the existing Markovian traffic assignment framework to novel traffic control strategies. In the Markovian traffic assignment framework, transition matrices are used to derive the traffic flow allocation. In contrast to the static traffic assignment, the framework only requires flow split ratio at every intersection, bypassing the need of computing path flow allocation. Consequently, compared to static traffic assignment, drivers’ routing behaviors can be modeled with fewer variables. As a result, it could be used to improve the efficiency of traffic management, especially in large scale applications. To begin with, the article introduces Markovian traffic assignment and connects it to the classic static traffic assignment. Then, the framework is extended to dynamic traffic assignment using microscopic traffic simulator Simulation of Urban Mobility (SUMO). In a case study, the framework is applied to a standard benchmark network, where optimal routing behaviors are independently learned through grid search, random search, and evolution strategies, under three different reward functions (network outflow, total vehicle hours of travel, and average marginal regret). The case study shows that the this novel traffic control strategy is promising, as Markov chain theory supports the ability to scale up to larger networks. 
    more » « less
  9. State-of-the-art deep reading comprehension models are dominated by recurrent neural nets. Their sequential nature is a natural fit for language, but it also precludes parallelization within an instances and often becomes the bottleneck for deploying such models to latency critical scenarios. This is particularly problematic for longer texts. Here we present a convolutional architecture as an alternative to these recurrent architectures. Using simple dilated convolutional units in place of recurrent ones, we achieve results comparable to the state of the art on two question answering tasks, while at the same time achieving up to two orders of magnitude speedups for question answering. 
    more » « less